ESTIMATION OF THE 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA FOR MORE REALISTIC SOLAR WIND MODELLING

J. de Patoul¹, C. Foullon¹, D. Vibert², P. Lamy², C. Peillon², and R. Frazin³

¹University of Exeter, ²Laboratoire d'Astrophysique de Marseille, ³University of Michigan

ABSTRACT

- We estimate the electron density (N_e) distribution in the solar corona
- for the last two recent minima of solar activity, with LASCO
- using a new time-dependent tomography method.
- (1) Do we have realistic N_e distributions at the equator and in the coronal holes?
- (2) How is the temporal evolution of the N_e distributions during the last two solar minima?
- (3) Does the position of the maximum N_e follow the streamer belt?

1. SOLAR CORONAGRAPH IMAGES

Polarized brightness images (PB) from SOHO/LASCO-C2.

■ The PB are dominated by Thompson Scattering. We mask strong temporal change produce by Coronal Mass Ejections (CME)

Fig.1: PB images with a background subtraction and a contrast enhancement (26-Mar-2008). Field of View: 2 R_{\odot} to 6.5 $R_{\odot}.$

2. TOMOGRAPHY RECONSTRUCTION METHOD

Electron density of the corona:
$$N_e(r, \theta, \varphi, t) = \arg\min_{\mathbf{x} \ge b} \left\| \begin{pmatrix} \mathbf{y} \\ \mathbf{0} \end{pmatrix} \right\|$$

In the new method, we add a temporal and co-rotating regularization [1]:

$$\mathbf{R} = \left(\lambda_s \mathbf{R}_s, \ \lambda_t \mathbf{R}_t, \ \lambda_c \mathbf{R}_c\right)^T$$

TIME SERIES OF DENSITY RECONSTRUCTIONS:

y contains pixels of the PB images;

x contains the bins of the N_e , with the constraint of positivity: $\mathbf{x} \ge b$ and b = 0.

• A is the projection matrix determined by the physics and the geometry of the problem. **R** is the regularization matrix. Usually, only a spatial regularization is used $\mathbf{R} = \lambda_s \mathbf{R}_s$.

Each reconstruction: half a rotation $\simeq 14$ days $\simeq 13-15$ images. **Period of time:** the two recent solar minima, *i.e.*, **1996–1997 & 2008–2010**. **Time series:** One full 3D reconstruction every 4 days.

3. DENSITY RECONSTRUCTION vs. PFSS vs. PREDSCI MHD MODEL *Tomography reconstruction* (N_e) **PredSci MHD Model** (N_p) 5.98 z[©] 5.96 8 5.92 270 Fig.2: Spherical plane at $3.5R_{\odot}$. 180° long corresponds to Dec 28, 2008 (Carrington Rotation 2077).

Fig.3: Spherical plane at 3.5*R*_☉. 180°long corresponds to Jun 17, 2010 (Carrington Rotation 2098).

Black line: Heliospheric Magnetic Equator (HME) PredSci MHD Model: polytropic MHD simulation (based on same from PFSS model (coronal fields extrapolated from SOHO/MDI magnetograms) [2]. **Dashed line:** magnetogram as for the PFSS) [3], Maximum N_e from tomography shows a mismatch provides the coronal plasma with PFSS/HME. density $(N_p = N_e)$.

5. DENSITY RADIAL PROFILE

Red N_e maximum at the equator.

Blue N_e average over the poles above $\pm 65^{\circ}$.

Dashed line: First solar minimum. **Continuous line:** Second solar minimum.

Squares: Saito model [4]. **Dots:** PredSci MHD model during the second minimum.

Fig.6: Electron density, *N_e*, at the current sheet (red) and the poles (blue).

6. TEMPORAL EVOLUTION OF THE ELECTRON DENSITY AT $3.5R_{\odot}$

Black Sunspots Number (SIDC).

Red N_e maximum at the

- **PFSS** and PredSci use a full rotation, while tomography requires only half rotation.
- Tomography reconstruction is more detailed at the poles and at the equator compared to PredSci.
- Mismatch between max N_e and the PFSS/HME could be due to pseudo-streamer.

4. LATITUDE OF THE CURRENT SHEET AND THE DENSITY MAXIMUM

How does the position in latitude of the PFSS/HME, N_e maximum in the MHD model and N_e maximum in the tomography reconstruction, vary with time?

PFSS and PredSci show similar result since they both use Magnetogram Synoptic Maps.

PredSci Model (N_p)

20 c

-20 -

equator.

Blue N_e average over the poles above $\pm 65^{\circ}$.

- Good agreement with the Sunspots number (SSN).
- At the poles N_e is similar for two minima.
- At the equator N_e is lower for the second minimum.

Fig.5: N_e estimation at $3.5R_{\odot}$.

SUMMARY & CONCLUSION

Realistic values? Time evolution? The value range of PredSci/N_e is shorter and over-estimates the tomography results by an order of magnitude. Temporal variations in the 3D N_e distribution from tomography are non negligible.

Realistic radial profiles? Deviation in N_e between Saito model and tomography at the poles for distance $\leq 5R_{\odot}$; Radial profile changes between solar minima: at the poles they cross at $3.5R_{\odot}$, at the equator they differ by $\sim 10^{5} \mathrm{cm}^{-3}$ \rightarrow Saito model cannot be used realistically for solar activity evolution.

Location of the maximum N_e does not always follow the HME.

 \rightarrow Pseudo-streamer could be denser than the streamer belt?

Fig.4: Latitude of the HME and *N_e* maximum at $3.5R_{\odot}$ during the solar minimum, 2008–2010.

Realistic positions? Positions of PFSS/HME and PredSci/N_emax are usually similar and follow the streamer belt. However, positions of N_e max from tomography do not always follow the predicted streamer belt.

The results provide important constraints and initial conditions for a realistic and running time models of the solar corona and solar wind. So far, time-dependent MHD models suffer from realistic initial conditions (density, temperature, velocity) close to the surface and are not well constrained outward (radial profile).

[1] Peillon et al., *Sol.Phys.* in prep. [2] Schatten, et al., Sol. Phys. 1969 [3] Predictive Science: *www.predsci.com* (Riley, et al., *JGR* 2001) [4] Saito, et al., *Sol.Phys.* 1977

May 2015 Judith de Patoul (j.depatoul@exeter.ac.uk) beneficiary of an AXA Research Fund postdoctoral grant

